URBAN GEOGRAPHIC INFORMATION SYSTEM

Python Statistics & Regression

0

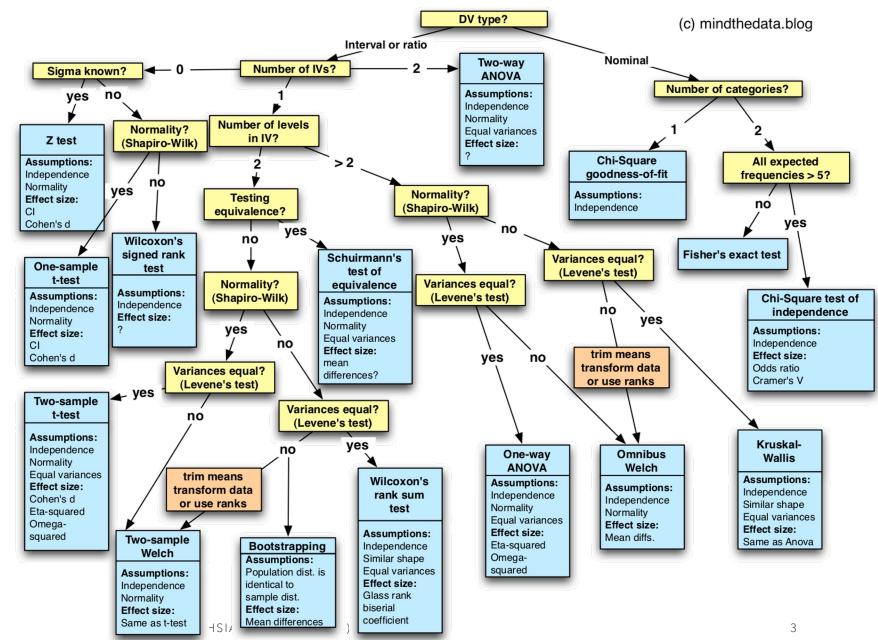
Chun-Hsiang Chan

Department of Geography, National Taiwan Normal University

Outline

- Statistical Analysis
- Normality Test
- Inferential Statistics
- Correlation Analysis
- Scale Problem
- Regression

statsmodels


SciPy

scikit

2

0

Statistical Analysis Road Map

Statistical Analysis Road Map

Table 1 Choice of statistical test from paired or matched observation

Variable	Test
Nominal	McNemar's Test
Ordinal (ordered categories)	Wilcoxon
Quantitative (discrete or non-normal)	Wilcoxon
Quantitative (normal)	Paired t-test

Table 2 Parametric and nonparametric tests for comparing two or more groups

	Parametric Test	Situation	Nonparametric Test
	t-test	Two independent	Wilconxon rank sum test
	t-test	population	Mann-Whitney U test
	One way analysis of variance	Three or more populations	Kruskal Wallis test
Source:	Paired t-test	Deired papulation	Sign test
https://www.healthknowledge.org.u k/public-health-textbook/research- methods/1b-statistical-	Faired t-test	Paired population	Wilconxon rank sign test
methods/parametric- nonparametric-tests	Pearson correlation	Correlation	Spearman correlation

Statistical Analysis Road Map

Table 3 Choice of statistical test for independent observations

	Outcome variable						
Input variable		Nominal	Categorical (>2)	Ordinal	Quantitative Discrete	Quantitative Non-normal	Quantitative Normal
	Nominal	χ^2 or Fisher's	χ^2	χ^2 -trend or Mann-Whitney	Mann-Whitney	Mann-Whitney or log-rankª	T-test
	Categorical (>2)	χ^2	χ^2	Kruskal-Wallis ^b	Kruskal-Wallis ^b	Kruskal-Wallis ^b	ANOVA ^c
	Ordinal	χ^2 -trend or Mann- Whitney	e	Spearman rank	Spearman rank	Spearman rank	Spearman rank or Linear regression ^d
	Quantitative Discrete	Logistic regression	e	e	Spearman rank	Spearman rank	Spearman rank or Linear regression ^d
	Quantitative Non- normal	Logistic regression	e	e	e	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and Linear regression
	Quantitative Normal	Logistic regression	e	e	e	Linear regression ^d	Pearson or Linear regression

^a If data are censored. ^b The Kruskal-Wallis test is used for comparing ordinal or non-Normal variables for more than two groups, and is a generalisation of the Mann-Whitney U test. ^c Analysis of variance is a general technique, and one version (one way analysis of variance) is used to compare Normally distributed variables for more than two groups, and is the parametric equivalent of the Kruskal-Wallistest. ^d If the outcome variable is the dependent variable, then provided the residuals (the differences between the observed values and the predicted responses from regression) are plausibly Normally distributed, then the distribution of the independent variable is not important. ^e There are a number of more advanced techniques, such as Poisson regression, for dealing with these situations. However, they require certain assumptions and it is often easier to either dichotomise the outcome variable or treat it as continuous.

13 NOVEMBER 2023

Source: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/parametric-nonparametric-tests

Normality Test :: Shapiro–Wilk test

 The Shapiro-Wilk test is a test of normality in frequentist statistics.
 The Shapiro-Wilk test tests the null hypothesis that a sample x₁, ..., x_n came from a normally distributed population. The test statistic is

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} x_{(i)}\right)^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}, where \ x_{i}$$

(with parentheses enclosing the subscript index *i*; not to be confused with x_i) is the *i*th order statistic, i.e., the *i*th-smallest number in the sample; $\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$, $8 \le n \le 50$ is the sample mean.

Shapiro–Wilk test

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\bar{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n) \text{ is the sample mean.}$$

The coefficient a_i are given by: $(a_1, \dots, a_n) = \frac{m^T V^{-1}}{C}$, where C is a vector norm: $C = ||V^T m|| = \sqrt{m^T V^{-1} V^{-1} m}$ and the vector $m, m = (m_1, \dots, m_n)^T$ is made of the expected values of the order statistics of independent and identically distributed random variables sampled from the standard normal distribution; finally, V is the covariance matrix of those normal order statistics.

Shapiro–Wilk test

α =	0.05	n =	15				Data Pairs				
Raw DataSorted Dataa valueUpper valueLower value		value	Difference	a*Difference							
1	20	1	18	a1	0.5150	#15	22	#01	18	4	2.0600
2	19	2	18	a2	0.3306	#14	21	#02	18	3	0.9918
3	18	3	18	a3	0.2495	#13	21	#03	18	3	0.7485
4	19	4	18	a4	0.1878	#12	21	#04	18	3	0.5634
5	22	5	19	a5	0.1353	#11	20	#05	19	1	0.1353
6	18	6	19	a6	0.0880	#10	20	#06	19	1	0.0880
7	21	7	19	a7	0.0433	#09	19	#07	19	0	0.0000
8	19	8	19		1						
9	21	9	19		n			<u>_ n</u>	<u>ک</u>		
10	18	10	20		$\sum_{i=1}^{n} a_i$	x (<i>i</i>)	4.59	$\left \left(\sum a_{i}\right)\right $	$(\mathbf{x}_{(i)})$	21.0681	
11	18	11	20		i=1			$\left \left \left \frac{1}{i=1} \right \right \right $			
12	19	12	21	1	n		00.70	V	V	0.886541	
13	20	13	21		$\sum_{i=1}^{n} (x_i -$	$(-\bar{x})^2$	23.73	W cr	itical	0.881	1
14	21	14	21		i=1]
15	MBE R9 023	15	22		СН	UN-HSIANG	CHAN (202	3)			-

Kolmogorov-Smirnov Test

- The Kolmogorov-Smirnov test (K-S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (one-sample K-S test), or to compare two samples (two-sample K-S test), where n is larger than 50.
- The null distribution of this statistic is calculated under the null hypothesis that the sample is drawn from the reference distribution (in the one-sample case) or that the samples are drawn from the same distribution (in the two-sample case).

Kolmogorov-Smirnov Test

• The two-sample K-S test is one of the most useful and general **nonparametric** methods for comparing two samples, as it is **sensitive to differences in both location and shape of the empirical cumulative distribution functions of the two samples**.

$$F_n = \frac{number of (elements in the sample \leq x)}{n} = \frac{1}{n} \sum_{i=1}^n 1_{(-\infty,x]}(X_i),$$

• The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is

$$D_n = \sup_{x} |F_n(x) - F(x)|,$$

where sup is the supermum of the set of distances.

• Intuitively, the statistic takes the largest absolute difference between the two distribution functions across all x values.

13 NOVEMBER 2023

CHUN-HSIANG CHAN (2023)

Code :: Normality Test

normality test # Kolmogorov-Smirnov Test from statsmodels.stats.diagnostic import kstest_normal ks, pval = kstest_normal(df['avganncount'], dist='norm', pvalmethod='table') print('Kolmogorov-Smirnov Test:',ks, pval) # Shapiro-Wilk Test from scipy.stats import shapiro sw, pval = shapiro(df['avganncount']) print('Shapiro-Wilk Test:',sw, pval) # D'Agostino and Pearson's: test that combines skew and kurtosis to produce an omnibus test of normality from scipy.stats import normaltest nor, pval = normaltest(df['avganncount']) print('D'Agostino and Pearson's:',nor, pval)

F Test

• The definitional equation of sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i} (y_{i} - \bar{y})^{2}$$

• The fundamental technique is a partitioning of the total sum of squares SS into components related to the effects used in the model.

$$SS_{Total} = SS_{treatments} + SS_{Error} \\ \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y} \dots)^2 = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y} \dots)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2$$

F Test

• The *F*-test is used for comparing the factors of the total deviation. For example, in one-way, or single-factor ANOVA, statistical significance is tested for by comparing the F test statistic.

 $F = \frac{variance \ between \ treatments}{variance \ within \ treatments}$ $F = \frac{MS_{Treatments}}{MS_{Error}} = \frac{\frac{SS_{Treatments}}{I-1}}{\frac{SS_{Error}}{n_T-1}}$

where MS is mean square, I is the number of treatments and n_T is the total number of cases.

T Test

- In addition to one-sample t-test, there are three types of t-test, including paired t-test, and two-sample independent t-test (assume that the variance of two samples or populations are [not] equal).
- In the following slides, we will give some examples to show their differences.

Question X

How do we determine whether the variances between two samples or populations are equal?

Paired T Test

• If the two samples or populations are from matched or paired sources or a replicated measurement, you must select a paired t-test.

$$t = \frac{\overline{X_D} - \mu_0}{\frac{S_D}{\sqrt{n}}}$$

 $\overline{X_D}$ and s_D are the average and standard deviation of the differences between all pairs, the constant μ_0 is zero if we want to test whether the average of the difference is significantly different, and n is the number of pairs.

Source: <u>https://en.wikipedia.org/wiki/Student%27s_t-test</u>

Source: https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/paired-sample-t-test/ **Source:** https://www.omnicalculator.com/statistics/t-test#p-value-from-t-test

Two-sample Independent T-test

• If the variance of two samples or populations are equal (or very similar).

$$t = \frac{\overline{x_1} - \overline{x_2} - \mu_0}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

 s_p is the pooled standard deviation, defined by

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Source: https://en.wikipedia.org/wiki/Student%27s_t-test **Source:** https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/paired-sample-t-test/ **Source:** https://www.omnicalculator.com/statistics/t-test#p-value-from-t-test

Two-sample Independent T-test

• If the variance of two samples or populations is **unequal** (or very similar), refer to Welch's t-test.

$$t = \frac{\overline{x_1} - \overline{x_2} - \mu_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Source: https://en.wikipedia.org/wiki/Student%27s_t-test

Source: https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/paired-sample-t-test/ **Source:** https://www.omnicalculator.com/statistics/t-test#p-value-from-t-test

CHUN-HSIANG CHAN (2023)

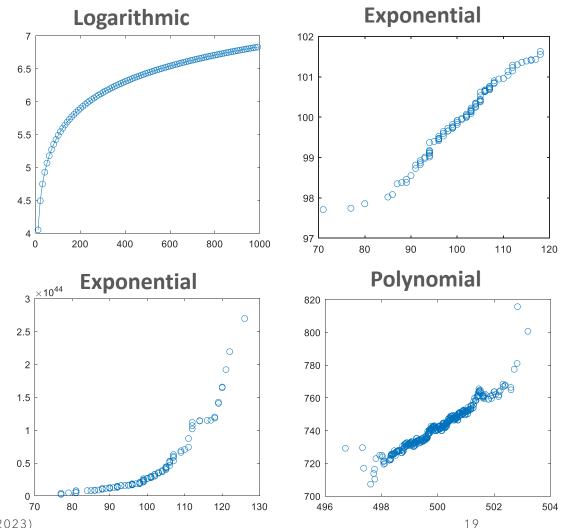
Code :: Two-sample Independent T-test

levene Test

from scipy.stats import levene

levene(cal['medincome'], col['medincome'])

two independent variables - t test


from scipy.stats import ttest_ind

ttest_ind(cal['medincome'], col['medincome'], axis=0, equal_var=True)

item	maan	std.dev		f test		t test
nem	mean	sta.dev	f value	p value	t value	p value
California	56102.91	15722.81	0.0125	0.9077	1 1692	0.2451
Colorado	52769.08	15144.20	0.0135	0.9077	1.1002	0.2431

Correlation Analysis

- Correlation analysis is an inferential statistic to describe the relationship or association between one variable and another.
- Most formulae for correlation analyses are developed for linear relationships; therefore, other relationships (e.g., logistic, exponential, and cubic) are unsuitable. A nonlinear relationship could adopt the performance of curvefitting results.

CHUN-HSIANG CHAN (2023)

Correlation Analysis

Variable Y/X	Quantitative X	Ordinal X	Nominal X
Quantitative Y	Pearson <i>r</i>	Biserial r _b	Point Biserial r_{pb}
Ordinal Y	Biserial r _b	Spearman $ ho$ / Tetrachoric r_{tet}	Rank Biserial r_{rb}
Nominal Y	Point Biserial r_{pb}	Rank Biserial r _{rb}	Phi, L, C, V, Lambda

- There are two important outcomes from correlation analyses: significance and coefficient.
- **Significant correlation**: the consistency of the association between one variable and the other.
- **Coefficient of correlation**: the direction (i.e., positive or negative) and magnitude (i.e., value) of correlation between variables.

- Pearson correlation coefficient, also known as Pearson product-moment correlation coefficient (PPMCC), is to measure the linear correlation between two variables or data.
- The definition of Pearson correlation coefficient is calculated by the covariance of the two variables divided by the product of their standard deviations. Its value ranges from -1 to +1.

$$\rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y}, \text{ when it is applied for population}$$
$$r = \frac{cov(X,Y)}{s_X s_Y}, \text{ when it is applied for sample}$$

CHUN-HSIANG CHAN (2023)

$$\begin{split} \rho &= \frac{cov(X,Y)}{\sigma_X \sigma_Y}, where \ cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)], \\ then \ \rho &= \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}, and ... \\ \mu_X &= \mathbb{E}[X]; \mu_Y = \mathbb{E}[Y]; \\ \sigma_X^2 &= \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2; \\ \sigma_Y^2 &= \mathbb{E}[(Y - \mathbb{E}[Y])^2] = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2; \\ \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] &= \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \\ \rho_{XY} &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - (\mathbb{E}[X])^2}\sqrt{\mathbb{E}[Y^2] - (\mathbb{E}[Y])^2}} \end{split}$$

13 NOVEMBER 2023

CHUN-HSIANG CHAN (2023)

Source: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

• Testing using t-distribution with degrees of freedom n-2, where standard error is denoted as,

$$\sigma_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

• Therefore, *t* value is ...

$$t = \frac{r}{\sigma_r} = r \sqrt{\frac{n-2}{1-r^2}}$$

The inverse function for determining the critical values for r is ...

$$r = \frac{t}{\sqrt{n-2+t^2}}$$

Sleeping/Day, X _i	Relax/Day, Y _i	cov(X,Y) -2.2370
7.5	1	$\rho = \frac{\sigma_X \sigma_Y}{\sigma_X \sigma_Y} = \frac{1}{2.0011 \times 3.0509} = -0.3664$
8	12	
9.1	2	$t = \frac{r}{\sigma_r} = r \sqrt{\frac{n-2}{1-r^2}}$
6	10	$\sigma_r \sqrt{1-r^2}$
10	5	11 - 2
8.4	6.1	$t = -0.3664 \times \sqrt{\frac{11 - 2}{1 - (-0.3664)^2}}$
9.1	7	
2.4	8.2	= -1.18143
6.7	7	
6.8	6	$t_{-1.18143,9} = 0.133853$
9	4.5	

Code :: Pearson Correlation Coefficient r

# calculate Pearson correlation matrix	avganncount - 1 054 014 007 027 033 014 006 002 012 012 012 013 014 016 021 02 03 031 022 02 001 013 013 02 01 013 014 015 014 015 014 015 014 015 01 020 01 013 014 015 015 015 015 015 015 015 015 015 015
corr = df1.corr()	target_deathrate - a14 as 1 as 2 as
corr = np.round(corr,2)	povertypercent - 0.14 0.07 043 001 0.7 0.7 1 0.00 0.03 0.21 0.13 0.64 0.27 0.09 0.16 0.39 0.25 0.31 0.4 0.00 0.2 0.70 0.06 0.2 0.70 0.06 02 0.70 0.06 02 0.70 0.06 02 0.70 0.07 02 0.2 0.70 0.06 02 0.71 0.03 0.09 0.11 0.07 0.2 0.2 0.71 0.05 0.07 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.1 0.05 0.07 0.07 0.1 0.05 0.07 0.07 0.00 0.05 0.05 0.05 0.05
# visualize correlation reusits	medianagefemale - 012 0.14 001 001 013 018 015 003 012 033 1 038 014 024 031 007 024 018 025 011 005 021 025 040 005 03 percentmarried - 011 0.18 027 012 030 010 004 004 005 043 013 1 001 013 013 013 005 01 01 04 025 045 033 023 025 040 005 pctnohs18_24 - 014 0.14 009 017 025 013 029 005 001 01 014 001 1 005 04 0.8 022 04 035 013 045 046 043 037 033 01 pcths18_24 - 018 015 026 000 015 015 005 005 005 005 005 005 014 011 015 015 015 015 014 027 013 025 025 024 035 013 005 005 005 005 005 005 005 015 015 015
<pre>plt.figure(figsize=(11,8))</pre>	pctsomecol18_24 - a11 a1 a1 a1 a3 a a a a a a a a a a a a
<pre>sns.heatmap(corr, cmap="Greens",annot=True, annot_kws = {'size': 5})</pre>	pctbachdeg25_over - 632 632 646 661 67 63 66 67 63 66 67 63 66 66 67 63 66 67 63 66 67 63 66 67 63 60 60 60 60 60 60 60 60 60 60 60 60 60
<pre>= { size : 3}) plt.show()</pre>	pctpubliccoveragealone - - 0
	avganncount - avgdeathsperyear - target deathrate - transet - target deathrate - target - deathrate - deathr

1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

Spearman Rank Correlation ρ

- The Spearman correlation coefficient is defined from the Pearson correlation coefficient between the rank variables.
- For a sample of size n, the n raw scores X_i, Y_i are converted to ranks $R(X_i), R(Y_i)$, and r_s is computed as

$$r_{s} = \rho_{R(X)R(Y)} = \frac{cov(R(X), R(Y))}{\sigma_{R(Y)}\sigma_{R(Y)}}$$

where ρ denotes the Pearson correlation coefficient with rank variables, cov(R(X), R(Y)) is the covariance of the rank variables, $\sigma_{R(X)}$ and $\sigma_{R(Y)}$ are the standard deviations of the rank variables.

Spearman Rank Correlation ρ

• Only if all *n* ranks are distinct integers, it can be computed using the popular formula.

$$r_{s} = 1 - \frac{6\sum d_{i}^{2}}{n(n^{2} - 1)}$$

where $d_i = R(X_i) - R(Y_i)$ is the difference between the two ranks of each observation, *n* is the number of observations.

• Significance measurement could be obtained from t distribution, where degree of freedom is n - 2.

$$t = r_s \sqrt{\frac{n-2}{1-r^2}}$$

Spearman Rank Correlation ρ

PR , X_i	Reading/Day, <i>Y_i</i>	x _i rank	y _i rank	d_i	d_i^2
60	1	1	2	-1	1
65	1	2	2	0	0
71	2	3	4	-1	1
75	1	4	2	2	4
78	5	5	6	- 1	1
81	6	6	7.5	-1.5	2.25
85	7	7	9.5	-2.5	6.25
89	8	8	11	-3	9
91	7	9	9.5	-0.5	0.25
95	6	10	7.5	2.5	6.25
99	4	11	5	6	36

Code :: Spearman Rank Correlation ρ

correlation analysis

Pearson Correlation: linear parametric

from scipy.stats import pearsonr

rho_p, pval_p = pearsonr(df['avganncount'], df['avgdeathsperyear'])
print('Pearson Correlation:', rho_p, pval_p)

Spearman Correlation: nonlinear or nonparametric

from scipy.stats import spearmanr

rho_s, pval_s = spearmanr(df['avganncount'], df['avgdeathsperyear'])
print('Spearman Correlation:', rho_s, pval_s)

Pearson Correlation: 0.9394077833002424 0.0 Spearman Correlation: 0.8177036458376524 0.0

Scale Problem

- Typically, we have five numerical transformation methods.
 - 1. Normalization
 - 2. Standardization
 - 3. Binarization
 - 4. Centralization
 - 5. Feature scaling
- Among these five methods, standardization is the most common method in statistical analysis because of its range of transformed value.

Scale Problem

Let $p \ge 1$ be a real number. The p - norm (= $\ell_p - norm$) of vector $x = (x_1, ..., x_n)$ is $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)$ Given p = 1 $L1 = ||x||_1 = |x_1| + |x_2|$ Given p = 2 $L2 = ||x||_2 = \sqrt{|x_1|^2 + |x_2|^2}$ Given $p = \infty$ $L\infty = \|x\|_{\infty} = \max(x)$

L1

L2

 (x_1, x_2)

Scale Problem

Methods	Equations	
Standardization	$x' = \frac{x - \mu}{\sigma}$	
Binarization	$if \ x \ge threshold; x' = 1$ else $x' = 0$	
Centralization	$x' = x - \frac{1}{n} \sum_{i=1}^{n} x_i$	
Feature scaling	$x' = \frac{x - x_{min}}{x_{max} - x_{min}}$	

 μ and σ denote mean and standard deviation, respectively.

Regression Analysis

Objective function:

• Linear Regression:

$$\operatorname{Min}_{w} \frac{1}{m} \sum_{i} (y_{i} - w^{T} x_{i})^{2}$$

• Lasso Regression:

$$Min_{w}\frac{1}{m}\left(\sum_{i}(y_{i}-w^{T}x_{i})^{2}+\lambda\sum_{j}^{n}|w_{j}|\right)$$

Ridge Regression:

$$Min_w \frac{1}{m} \left(\sum_i (y_i - w^T x_i)^2 + \lambda \sum_j^n w_j^2 \right)$$

Gradient Descent:

 $w^{new} = w^{old} - \gamma dw$, where γ is the learning rate

Regression Analysis :: OLS

- OLS is the simplest linear regression, which stands for ordinary least squares.
- If we use partial differential on *w*, then we get ...

$$\frac{Z}{m}X^T(Y-Xw)$$

x_scaled = stats.zscore(x_list, axis=0, ddof=1)
x_scaled = sm.add_constant(x_scaled)

```
OLS_reg = sm.OLS(y_list['incidencerate'], x_scaled).fit()
OLS_reg.summary()
```

Regression Analysis :: Lasso

- Using the **L1 norm** concept in the objective function
- If we use partial differential on *w*, then we get ...

$$\left(\frac{2}{m}X_j^T(Y-Xw) + \frac{1}{m}\lambda, w_j \ge 0\right)$$
$$\frac{2}{m}X_j^T(Y-Xw) - \frac{1}{m}\lambda, w_j < 0$$

from sklearn.linear_model import Ridge, RidgeCV, Lasso
lassoReg = Lasso(alpha=1)
lassoReg.fit(x_scaled, y_list['incidencerate'])

Regression Analysis :: Ridge

- Using the L2 norm concept in the objective function
- If we use partial differential on w, then we get ...

 $\frac{2}{m}(X^T(Y-Xw)+\lambda w)$

```
from sklearn.linear_model import Ridge, RidgeCV, Lasso
ridgeReg = Ridge(alpha=1)
ridgeReg.fit(x_scaled, y_list['incidencerate'])
plt.figure(figsize=[12,6], dpi=300)
plt.bar(np.arange(x_scaled.shape[1]), ridgeReg.coef_, facecolor='#81D8D0')
plt.xticks(np.arange(x_scaled.shape[1]), x_scaled.columns.values, rotation=80)
plt.plot([0, x_scaled.shape[1]], [0, 0], 'k')
plt.show()
```

Regression Analysis :: GLM

When your data does not follow normal distribution, you must find a suitable distribution for regression analysis.

Moreover, if your data has many zeros, you must use the zero-inflated version of GLM to overcome the zero inflation problem.

Distribution	Support of distribution	Typical uses	Link name	Link function, ${f X}{meta}=g(\mu)$	Mean function
Normal	real: $(-\infty,+\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X} oldsymbol{eta}$
Exponential	real: $(0,+\infty)$	Exponential-response	Negative	$\mathbf{X}oldsymbol{eta}=-\mu^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$
Gamma	$(0, +\infty)$	data, scale parameters	inverse	$\Lambda \mu = -\mu$	$\mu = -(\Lambda \rho)$
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	${f X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$
Poisson	integer: $0, 1, 2, \dots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}\boldsymbol{\beta})$
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	
Binomial	integer: $0, 1, \dots, N$	count of # of "yes" occurrences out of N yes/no occurrences		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{n-\mu} ight)$	
	integer: $[0,K)$				
Categorical	K-vector of integer: $[0, 1]$, where exactly one element in the vector has the value 1	outcome of single <i>K</i> -way occurrence	Logit	$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$
Multinomial	K-vector of integer: $[0,N]$	count of occurrences of different types (1,, <i>K</i>) out of <i>N</i> total <i>K</i> -way occurrences		(* µ)	

Common distributions with typical uses and canonical link functions

statsmodels 0.14.0

statsmodels.discrete. count_model.Zero > InflatedPoisson

statsmodels.discrete. count_model.Zero InflatedNegativeBinomial P

statsmodels.discrete. count_model.Zero InflatedGeneralized Poisson

statsmodels.discrete. truncated_model.Hurdle CountModel

statsmodels.discrete. truncated_model. TruncatedLFNegative BinomialP

statsmodels.discrete. truncated_model. TruncatedLFPoisson

statsmodels.discrete. conditional_models. ConditionalLogit

statsmodels.discrete. conditional_models. ConditionalMNLogit

statsmodels.discrete.count_model.ZeroInflatedPoiss

class statsmodels.discrete.count_model.ZeroInflatedPoisson(

endog, exog, exog_infl=None, offset=None, exposure=None, inflation='logit', missing='none', **kwargs

Poisson Zero Inflated Model

Parameters

endog : array_like

A 1-d endogenous response variable. The dependent variable.

exog : array_like

[source]

Regression Analysis :: GLMRegression Analysis :: GLM

```
# GLM: original data
model = sm.GLM(y_list['incidencerate'],
        x_scaled,
        family = sm.families.Gaussian())
result = model.fit()
result.summary()
```

Generalized Linear Model Regression Results

	3047	ions:	Observat	No.	ncidencerate	Dep. Variable: ir
	3022	uals:	Df Resid		GLM	Model:
	24	odel:	Df M		Gaussian	Model Family:
	2406.7	cale:	S		Identity	Link Function:
	-16173.	ood:	og-Likelih	L	IRLS	Method:
	7.2729e+06	nce:	Devia		20 Nov 2023	Date: Mon, 2
	7.27e+06	chi2:	Pearson		01:02:53	Time:
	0.2171	(CS):	lo R-squ.	Pseuc	3	No. Iterations:
					nonrobust	Covariance Type:
0.975]	[0.025	P> z	z	std err	coef	
0.975]	[0.025	F> 2	2	sta en	coel	
50.010	446.527	0.000	504.391	0.889	448.2686	const
12.192	2.608	0.002	3.027	2.445	7.4001	medincome
4.570	0.432	0.018	2.369	1.056	2.5009	popest2015
4.663	-5.045	0.939	-0.077	2.477	-0.1909	povertypercent
4.331	0.778	0.005	2.818	0.907	2.5546	studypercap
2.845	-0.679	0.228	1.205	0.899	1.0829	medianage

Question Time

Assignment:

• Thx

 Download today's lab practice and upload to moodle.

The End

dgeview')

Thank you for your attention!

Email: chchan@ntnu.edu.tw Web: toodou.github.io

SCAN ME